Using the Discrete Wavelet Transforms for De-noising in DSP

KUPCZAK, Marek
Ing., Katedra ATŘ-352, VŠB-TU Ostrava, 17. listopadu 15, Ostrava-Poruba, 708 33
marek.kupczak.fs@vsb.cz, http://www.352.vsb.cz

Abstract: This contribution describes the results of an implementation of discrete wavelet transforms (DWTs) into a digital signal processor (DSP). In particular for the realisation, there was used a 32-bit DSP with floating-point format – ADSP-21065L SHARC DSP. Designed algorithms, based on DWTs, were realized in C language and in assembly language both. These algorithms were used for de-noising of non-stationary signals. The hard threshold is calculated as Johnstone-Donoho universal threshold of the estimated value of noise standard deviation on the first decomposition level.

This contribution is the third contribution presented on ASR Seminars and summarizes previous results and brings some new results of DWTs implementation into DSP.

Keywords: DSP, digital signal processor, DWT, wavelet transform, threshold, de-noising

1 VisualDSP++

VisualDSP++ is the software product of the Analog Devices. It’s assigned for the development of DSP applications, it means for digital signal processors (DSP). VisualDSP++ contains an integrated environment for developing and debugging of applications. The user interface provides the access to tools for a code developing. Among these tools belong C/C++ compiler, assembler, linker, libraries containing the mathematical functions, functions for digital signal processing, I/O functions and so on.

For the developing of an own application we have three choices. We can use C/C++ language, assembly language or we can use both. There are several criteria which decide for the selection of a programming language, for example the performance and memory requirements, code portability or the existence of the already written codes.

Codes, written in an assembly language, will be generally always more efficient and they take less program memory space than codes written in C language. But the writing of codes in C language has its reasons. One of them is that there is huge quantity of the already written codes in C or C++ language, and there aren’t very efficient programs for the compilation of assembly codes between the different DSP platforms. Due to the C/C++ compiler there is a good portability of the codes written in C/C++ language between the DSP platforms.

The best way of code writing is the use of the both programming languages. Very efficient way is the identification of the C parts by the simulation instrument, which take the biggest process time, and to write these parts in the assembly language.

The C/C++ library is the collection of functions, macros and class templates that can be called from the source files. Concretely, C/C++ library for the ADSP-21xxx was used. The library can divided into four partial libraries: C library, C++ library, DSP library, I/O library. These libraries contain functions for a memory allocation, functions for the char and string routines, mathematical functions, functions for the digital signal processing, I/O functions.
2 DSP library

DSP library contains functions for the digital signal processing. It contains functions for the computation of coherence, covariance and correlation (autocoh, crosscoh, autocorr, crosscorr), function for the computation with the complex data (cabsf, cexpf), functions for the filters (biquad, fir, iir), functions for the computation of the direct and the inverse Fast Fourier Transform (cfftN, ifftN, rfftN) and functions for the computation with the time windows (gen_bartlett, gen_blackman, gen_gaussian, gen_hamming, gen_hanning, gen_harris, gen_kaiser, gen_rectangular, gen_triangle).

But this library doesn’t contain functions for the signal processing and the signal analysis based on the discrete wavelet transforms (DWTs).

3 Designed algorithms based on DWTs into DSP

The discrete wavelet transforms are very popular and many contributions on this subject were published. So in this work the detail description of these transformations isn’t presented. There are presented only own results of the implementation into SHARC DSP.

Discrete wavelet transforms are linear, so they can be defined by matrix form. When a transform matrix W is an orthogonal, an inverse matrix is transposed $W^{-1} = W^T$ (only for real matrices).

For post-processing of signals we can choose a record length and further we can create a sparse matrices for direct and inverse DWTs. Digital signal processor are dedicated for real-time processing, so we cannot take for example 1024 samples and do an analysis on them. We have to define these sparse matrices in the infinite form, given by form (1) and form (2). The filters length is in this case six. The low pass filter is h and the high pass filter is g.

$$W = \begin{pmatrix}
 h_0 & h_1 & h_2 & h_3 & h_4 & h_5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
 0 & 0 & h_0 & h_1 & h_2 & h_3 & h_4 & h_5 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
 0 & 0 & 0 & 0 & h_0 & h_1 & h_2 & h_3 & h_4 & h_5 & 0 & 0 & 0 & \cdots & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & h_0 & h_1 & h_2 & h_3 & h_4 & h_5 & 0 & 0 & \cdots & 0 \\
 g_0 & g_1 & g_2 & g_3 & g_4 & g_5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
 0 & 0 & g_0 & g_1 & g_2 & g_3 & g_4 & g_5 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
 0 & 0 & 0 & 0 & g_0 & g_1 & g_2 & g_3 & g_4 & g_5 & 0 & 0 & 0 & \cdots & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & g_0 & g_1 & g_2 & g_3 & g_4 & g_5 & 0 & 0 & \cdots & 0
\end{pmatrix}$$ (1)
The newly designed algorithms, based on DWTs, reflect the fact that these matrices are sparse.

The first decomposition step of an analyzed signal is defined as

\[
W^{-1} = \begin{pmatrix}
 h_0 & 0 & 0 & 0 & g_0 & 0 & 0 & 0 \\
 h_1 & 0 & 0 & 0 & g_1 & 0 & 0 & 0 \\
 h_2 & h_0 & 0 & 0 & g_2 & g_0 & 0 & 0 \\
 h_3 & h_1 & 0 & 0 & g_3 & g_1 & 0 & 0 \\
 h_4 & h_2 & h_0 & 0 & g_4 & g_2 & g_0 & 0 \\
 h_5 & h_3 & h_1 & 0 & g_5 & g_3 & g_1 & 0 \\
 0 & h_4 & h_2 & h_0 & 0 & g_4 & g_2 & g_0 \\
 0 & h_5 & h_3 & h_1 & 0 & g_5 & g_3 & g_1 \\
 0 & 0 & h_4 & h_2 & 0 & 0 & g_4 & g_2 \\
 0 & 0 & h_5 & h_3 & 0 & 0 & g_5 & g_3 \\
 0 & 0 & 0 & h_4 & 0 & 0 & 0 & g_4 \\
 0 & 0 & 0 & h_5 & 0 & 0 & 0 & g_5 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \vdots & \vdots \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

(2)

The first decomposition step of an analyzed signal is defined as

\[
Y = \begin{pmatrix} cA_1 \\ cD_1 \end{pmatrix} = W \cdot y ,
\]

where \(cA_i \) is a vector of approximation coefficients and \(cD_i \) is a vector of detail coefficients. But in fact we could execute relatively few operations of multiply-accumulate cycles because for example the individual coefficients of the decomposition we can calculate by following form

\[
cA_i = \sum_{j=0}^{K-1} h_j \cdot y_{\text{pozice}+j}
\]

(3)

\[
cD_i = \sum_{j=0}^{K-1} g_j \cdot y_{\text{pozice}+j}
\]

To calculate each individual coefficient of signal decomposition or reconstruction, we don’t have to multiply the huge \textit{sparse} matrix with an input data vector or matrix, but it’s possible to calculate these coefficients as the multiply-accumulate cycle between the filter coefficients and the individual data vector or matrix, respectively. The length of the total sum of the operations for the computation of each approximation or detail coefficient isn’t \(N \) (ordinarily hundreds or thousands of data), but is same with the length of the filter vectors \(h \) and \(g \) (ordinarily units of data). By this approach we obviate redundant operations like the multiplication with zero elements of the transform matrix \(W \) or \(W^{-1} \), respectively.
4 Realized functions based on DWTs

There were realized two functions which are a core for the next example, concretely for de-noising of non-stationary signals. These functions perform one step of signal decomposition and reconstruction. Their names are \textit{dwt} (discrete wavelet transform) and \textit{idwt} (inverse discrete wavelet transform). The definitions of these functions are in C language, but the declaration of them is in assembly language.

The function declarations for direct and inverse discrete wavelet transform are following:

\begin{verbatim}
float dwt (pm float *coefficients, dm float delay_line, int filter_length, int index)
float idwt (pm float *coefficients, dm float delay_line, int filter_length, int index)
\end{verbatim}

The function definitions for direct and inverse discrete wavelet transform are following:

\begin{verbatim}
r1 = dm(1,i6);
b0 = r8; i0 = r8; l0 = r12; m0 = r1;
r1 = dm(0,m0);
m0 = 1;
b8 = r4; i8 = r4; l8 = r12; m8 = 1;
f4 = dm(0,m0), f0 = pm(i8,m8);
r2 = r12;
f12 = f12 - f12;
lentr = r2, do (pc.1) until lce;
f8 = f0 * f4, f12 = f8 + f12, f4 = dm(i0,m0), f0 = pm(i8,m8);
f0 = f8 + f12;
\end{verbatim}

These functions have four input arguments and one output argument (a computed result). The first input argument is a pointer on a filter coefficients array, the second input argument is a pointer on a delay line array of measured of computed samples, the third input argument is low pass or high pass filter length and the fourth is an index that indicates a place for which a computation has to begin.

Filter coefficients are stored in DSP’ program memory (\textit{pm}), measured or computed samples are stored in DSP’ data memory (\textit{dm}). The fourth input argument is necessary because a computation isn’t performing in each step; in fact this is a multirate system with different decimation factors.
5 Multiresolution decomposition and thresholding

The decomposition process can be iterated, with successive approximations being decomposed in turn, so that one signal is broken into many lower-resolution components. This process can be shown in Fig. 1.

The thresholding is the simplest wavelet non-linear shrinkage technique. It is common for all thresholding rules to set to 0 the coordinates of a vector Y which is subjected to thresholding, if they are smaller in absolute value than a fixed non-negative number – the threshold λ. Depending on how the coordinates of Y are processed when they are larger than λ one can define different thresholding policies. The two most common thresholding policies are hard and soft. The analytic expressions for the hard- and soft-thresholding rules are (4) and (5).

\begin{align*}
\delta^h(Y_i, \lambda) &= Y_i \mathbf{I}(|Y_i| > \lambda) \\
\delta^s(Y_i, \lambda) &= (Y_i - \text{sgn}(Y_i) \cdot \lambda) \mathbf{I}(|Y_i| > \lambda)
\end{align*}

For $\lambda \geq 0$, $Y = (Y_1, \ldots, Y_N) \in \mathbb{R}$. The rules are depicted in Fig. 2 and Fig. 3.
The optimal thresholding rules are obtained by choosing the threshold $\lambda = \sigma$. Of course, σ is generally not known, and the optimal risk remains unattainable. Assume the following model by form (6), respectively (7)

$$Y_i = \theta_i + \sigma \cdot z_i, \quad i = 1, \ldots, N$$

$$Y = \theta + \sigma \cdot z$$

With $Y = (Y_1, \ldots, Y_N) = W \cdot y$, $\theta = (\theta_1, \ldots, \theta_N) = W \cdot s$ and $z = (z_1, \ldots, z_N) = W \cdot e$. Due to orthogonality of W, $z \sim N(0, \sigma^2)$.

The accurate computation of σ is unattainable. But Donoho and Johnstone have shown that the risk of the hard-thresholding rule with a universal threshold $\lambda = \sigma \cdot \sqrt{2 \log N}$ is close to the oracular risk.

We can calculate the estimated value of white noise standard deviation. We can propose that the useful signal is mainly low-frequency and the noise is mainly concentrated on the first detail level. The criteria of the standard deviation of the white noise are shown in [Kupczak, 2003]. But we cannot use the whole approach because we have enough time in real-time signal processing operations in DSPs; we have to simplify this approach.

So, we can calculate the estimated value of the standard deviation by this formula (8)

$$\sigma' = \frac{\text{median} \left\{ cD_{\text{sorted}} \right\} }{0, 6745}$$

(8)
6 Case study

Suppose we have to smooth a signal given in Fig. 4. It means to cancel the measurement noise. This signal contains two harmonic signals and the white noise. The standard deviation of the white noise is $\sigma = 2.28$. The sampling frequency is 48 kHz.

![The original signal](image1)

Figure 4 – The original signal

![The original and the smoothed signals](image2)

Figure 5 – The original signal and the smoothed signal

In Fig. 2 is shown the original signal and the smoothed signal. In this case, there was used Daubechies basis 3. It means that the low pass and high pass filter length is six. The low pass filter coefficients and the high pass filter coefficients are following:

<table>
<thead>
<tr>
<th>Low pass filter coefficients</th>
<th>High pass filter coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0 = 0,33267$</td>
<td>$g_0 = 0,03523$</td>
</tr>
<tr>
<td>$h_1 = 0,80689$</td>
<td>$g_1 = 0,08544$</td>
</tr>
<tr>
<td>$h_2 = 0,45988$</td>
<td>$g_2 = -0,13501$</td>
</tr>
<tr>
<td>$h_3 = -0,13501$</td>
<td>$g_3 = -0,45988$</td>
</tr>
<tr>
<td>$h_4 = -0,08544$</td>
<td>$g_4 = 0,80689$</td>
</tr>
<tr>
<td>$h_5 = 0,03523$</td>
<td>$g_5 = -0,33267$</td>
</tr>
</tbody>
</table>
The signal was decomposed to the third level. The computation of the estimated standard deviation was realized for each 32 samples. So it means that the signal can be non-stationary. The values of the estimated standard deviation σ and threshold λ are following:

<table>
<thead>
<tr>
<th>Estimated standard deviation</th>
<th>Thresholding value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_0 = 0$</td>
<td>$\lambda_0 = 0$</td>
</tr>
<tr>
<td>$\sigma_1 = 1,704$</td>
<td>$\lambda_1 = 4,914$</td>
</tr>
<tr>
<td>$\sigma_2 = 2,622$</td>
<td>$\lambda_2 = 7,564$</td>
</tr>
<tr>
<td>$\sigma_3 = 1,817$</td>
<td>$\lambda_3 = 5,241$</td>
</tr>
<tr>
<td>$\sigma_4 = 1,919$</td>
<td>$\lambda_4 = 5,534$</td>
</tr>
</tbody>
</table>

The sampling frequency of 1819A Codec (Sigma-Delta converter) was set up to 48 kHz. The ADSP-21065L runs at 60 MHz. The delay between the measured and processed sample is 28 steps. So in this case the delay is 0, 6 ms.

7 Conclusions

This contribution deals with the implementation the discrete wavelet transforms into digital signal processors, in particular into SHARC DSPs. There were designed two algorithms for direct and inverse discrete wavelet transforms for one-dimensional signals. These algorithms were realized in assembly language, but their definitions are in C language. So we can call these functions easily from C interface.

These functions are core for one application. This application is dedicated for de-noising of non-stationary one-dimensional signals. In this application the input signal (sampled via 1819A Sigma-Delta Converter) was decomposed via Mallat algorithms into three levels. Further we suppose that the white noise is mostly concentrated on the first decomposition level. From the detail coefficients of this level the estimated standard deviation was calculated. Further from this value, the threshold value was computed as Johnstone-Donoho universal threshold.

This threshold was applied to the approximation and detail coefficients of the third decomposition level. Further the inverse discrete wavelet transform was used. So, we obtained a smoothed signal.

The computation of the standard deviation is applied in pieces because of non-stationary signal.

The functionality of this application was verified with using an evaluation kit – ADSP-21065L EZ-KIT Lite. This evaluation kit contains 16-bit Sigma-Delta Converter (1819A) and 32-bit ADSP-21065L SHARC DSP with floating-point format that runs at 60 MHz.

The sample rate was set up to 48 kHz. In the case study was used Daubechies 3 basis, i.e. the low pass and high pass filter length is six. The delay between a measured sample and a processed sample is (in this case) 28 steps. So it means the delay is less that 1 ms, concretely 0, 6 ms. This small delay (relatively) is given by very short filter length. In conventional application, FIR filters are usually used. In these applications the FIR filter taps are usually very large. So the using of discrete wavelet transforms may be very interesting.
8 References

